The role of 2,4-dihydroxyquinoline (DHQ) in Pseudomonas aeruginosa pathogenicity

نویسندگان

  • Jordon D. Gruber
  • Wei Chen
  • Stuart Parnham
  • Kevin Beauchesne
  • Peter Moeller
  • Patrick A. Flume
  • Yong-Mei Zhang
  • Timothy Read
چکیده

Bacteria synchronize group behaviors using quorum sensing, which is advantageous during an infection to thwart immune cell attack and resist deleterious changes in the environment. In Pseudomonas aeruginosa, the Pseudomonas quinolone signal (Pqs) quorum-sensing system is an important component of an interconnected intercellular communication network. Two alkylquinolones, 2-heptyl-4-quinolone (HHQ) and 2-heptyl-3-hydroxy-4-quinolone (PQS), activate transcriptional regulator PqsR to promote the production of quinolone signals and virulence factors. Our work focused on the most abundant quinolone produced from the Pqs system, 2,4-dihydroxyquinoline (DHQ), which was shown previously to sustain pyocyanin production and antifungal activity of P. aeruginosa. However, little is known about how DHQ affects P. aeruginosa pathogenicity. Using C. elegans as a model for P. aeruginosa infection, we found pqs mutants only able to produce DHQ maintained virulence towards the nematodes similar to wild-type. In addition, DHQ-only producing mutants displayed increased colonization of C. elegans and virulence factor production compared to a quinolone-null strain. DHQ also bound to PqsR and activated the transcription of pqs operon. More importantly, high extracellular concentration of DHQ was maintained in both aerobic and anaerobic growth. High levels of DHQ were also detected in the sputum samples of cystic fibrosis patients. Taken together, our findings suggest DHQ may play an important role in sustaining P. aeruginosa pathogenicity under oxygen-limiting conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PqsA is required for the biosynthesis of 2,4-dihydroxyquinoline (DHQ), a newly identified metabolite produced by Pseudomonas aeruginosa and Burkholderia thailandensis.

A new metabolite, 2,4-dihydroxyquinoline (DHQ), was identified in cultures of the bacteria Pseudomonas aeruginosa and Burkholderia thailandensis. We found that the biosynthesis of DHQ correlates with the presence of a functional PqsA, which is a product of the pqsABCDE operon responsible for the synthesis of 4-hydroxy-2-alkylquinolines (HAQs) in P. aeruginosa. However, DHQ is not a degradation ...

متن کامل

In-depth Profiling of MvfR-Regulated Small Molecules in Pseudomonas aeruginosa after Quorum Sensing Inhibitor Treatment

Pseudomonas aeruginosa is a Gram-negative bacterium, which causes opportunistic infections in immuno-compromised individuals. Due to its multiple resistances toward antibiotics, the development of new drugs is required. Interfering with Quorum Sensing (QS), a cell-to-cell communication system, has shown to be highly efficient in reducing P. aeruginosa pathogenicity. One of its QS systems employ...

متن کامل

Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa.

Fluorescent pseudomonads secrete yellow-green siderophores named pyoverdines or pseudobactins. These comprise a dihydroxyquinoline derivative joined to a type-specific peptide and, usually, a carboxylic acid or amide. In Pseudomonas aeruginosa strain PAO1, six genes that encode proteins required for pyoverdine synthesis (pvd genes) have been identified previously. Expression of all of these gen...

متن کامل

Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96.

Pseudomonas fluorescens Q8r1-96 produces 2,4-diacetylphloroglucinol (2,4-DAPG), a polyketide antibiotic that suppresses a wide variety of soilborne fungal pathogens, including Gaeumannomyces graminis var. tritici, which causes take-all disease of wheat. Strain Q8r1-96 is representative of the D-genotype of 2,4-DAPG producers, which are exceptional because of their ability to aggressively coloni...

متن کامل

Real- Time - RT PCR Study of Aqueous Extract of Ammi visnaga on Pseudomonas aeruginosa Exo A and Exo S Genes Expression

Background and Aim: P. aeruginosa exotoxins are responsible for pathogenicity and antibiotic resistant. The aim of this study was to investigate the effects of the Ammi. visnaga (A. visnaga) extract on the P. aeruginosa exotoxin A and S genes expression. Materials and Methods: Antibacterial effects of the A. visnaga ethanolic extract were performed using the micro dilution technique in sequent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016